HEP Theory Lattice Activities & Plans Taku Izubuchi RIKEN BNL Research Center ## Lattice Gauge theories - True first-principles non-perturbative computations - Indispensable bridge between experiment and theory, allowing new physics to be discovered. A part of precision frontier. - Symmetries are key ingredients (gauge symmetry, chiral symmetry) - LGT and BNL - '79 Lattice Gauge simulation [M. Creutz] - '83- Electro Weak Matrix Element [Bernard & Soni,....] - '97- Domain-Wall Fermions (DWF)Nf=0 quenched [Blum & Soni] - '99- Riken-BNL-Columbia [RBC] - '02- DWF Nf=2 up, down quarks [RBC] - '05- DWF Nf=2+1 up, down, strange quarks [RBC-UKQCD] - '10 DWF Nf=2+1, continuum limit [RBC-UKQCD] Domain-Wall quarks good chiral symmetry small unphysical mixings - Small discretization error - simple chiral extrapolations - Unitary mf ## **HEP Lattice at BNL** US Universities Columbia Connecticut RIKEN-BNL Research Center UKQCD Univ. Edinburgh Univ. Southampton **IBM** **HEP Theory** FNAL/MILC **USQCD** QCDOC('05) ~ 10Tflops peak NYCCS CCS/ITD HotQCD FNAL/Jlab ~ 160 Tflops peak NYBlue('07)~ 130 Tflops peak Intrepid ('08) ~560 Tflops peak ## Organization - RIKEN BNL Columbia (RBC) Collaboration (1998-) - RIKEN-BNL Research Center 1.5 fellows, 2 PostDocs, 3 long-term visiting scientists - Columbia University 2 faculty, 2 PostDocs, 8 Students - University of Connecticut 1 faculty, 2 PostDocs, 2 Students Harvard, Yale, Virginia (Google), Regensburg 16 current students, ~20 PhD theses since 2005 - + UKQCD Collaboration (2005-) - Univ. of Edinburgh 5 faculty, 1 fellows, 1 staff, 2 PostDocs, 4 students - Univ. of Southampton 2 faculty, 1 Postdoc, 2 students CERN, Julich - + JLQCD (planned since 2010) - KEK, Tsukuba & Osaka Univ (# of personnel: accumulation of last 3 years) # Synergy with RIKEN BNL Research Center RBRC T.D. Lee 1997-2002 N.P. Samios 2003- - Lattice - Nuclear Theory - Experiment - Renewing MOU with BNL for JFY 2012-2017 - Synergy with HEP Theory group - Three generations of RBRC computers for Lattice QCDOC, the prototype of IBM's Blue Gene series, was a seed for USQCD's LQCD - Various PostDocs (in-house, RIKEN grants....) - Junior Research Associate (Students) Tenured faculty: 29 (theory) + 15 (exp) out of 24 (theory)+15 (exp) fellows and 30(theory)+19(exp) PostDocs. ## **Menu of Lattice Activities & Plans** - Formal study - QCDCQ - Ensemble Generation & Algorithm ensemble is publically available for US & international community - QCD+QED & g-2 LbL - Proton Decay - Electric Dipole Moment of Proton/Neutron - η η ' Spectroscopy and their Mixing - Strangeness Contents of Nucleons #### [Van de Water's talk] - Pion Kaon Weak Matrix Elements B_K Im (A_2) and Re(A_2) Re(A_0) Im (A_0) - K_L - K_S mass difference and long distance contribution to ϵ_K B- and D- meson Weak Matrix Elements Static limit Quark Relativistic Heavy Quark Lattice world average ## Theoretical Studies [M. Creutz] ✓ Phase structure of QCD in (m_u, m_d) plane [PRD83.016005, Annals. Phys. Phys. 326:911 (2011)] - Ising-like 2nd order at |mu+md| < |mu-md|</p> - Phase transition occurs at nonvanishing mu and md - Long distance physics without small Dirac eigen values - No transition at mu=0 when md is non-zero - No long distance physics despite small Dirac eigen values #### ✓ <u>Minimal Doubling Fermions</u> [PRD83:094506 (2011), JHEP 1012:041, PRD82:074502, JHEP 1009:027 (2010)] Works with Tatsuhiro Misumi & Taro Kimura also with Mainz group (Capitani, Wettig et. al.) #### ✓ Two reviews articles Annals Phys, 324:1573 (2009) Acta Physica Slovaca 61:1 (2011) ## **QCD+QED** simulation [PRD 82:094508 (2010), PoS KAON09:034] - Breakings of isospin symmetry - Electric charge $q_u = +2/3 e$, $q_d = -1/3 e$ - quark masses $m_u \neq m_d$ • Fit to chiral perturbation theory with EM (SU(3)+EM or SU(2)+Kaon+EM) to extract guark masses. - Chiral symmetry of DWF is used to define quark massless points. - Input: experimental data M_pi, M_K(+), M_K(0) - Output: quark masses m_u , m_d , m_s (attractive) #### **New Renormalization Schemes** [09 C. Sturm, Y. Aoki, N. Christ, TI, C. Sachrajda, A. Soni PRD80:014501 (2009)] Match the normalization of operator on lattice and in continuum theory (MS) via RI/SMOM schemes $$q^2 = p_1^2 = p_2^2$$ - •We find symmetric momentum (SMOM) configuration is useful to reduce one of the dominant systematic errors due to IR effects. - Quark mass renormalization error ``` \sim 10\% (MOM) \rightarrow \sim 5\% (SMOM) \rightarrow \sim 2\% (SMOM 2-loop), [L. Almeida, C. Sturm, PRD82:054017 (2010)] ``` - Using different RI/SMOM schemes (using various spinor projections) to check the systematic errors - 5 different schemes for the four quark operator for B_K to estimate the 2 loop effects. - Now extended to Delta S = 1 operators (including Delta $I = \frac{1}{2}$) ``` [C. Lehner & C. Sturm, arXiv:1104.4948] and Step-scaling [R. Arthur & P. Boyle, PRD83 114511 (2011)] ``` C. Sturm: an example of cross fields fertilization The masses of up and down quarks determined are compiled in "Review of Particle Physics" 2011 5 LATTICE (2 DWF + EM and 3 staggered) and 4 THEORETICAL ## Application of Results : Origins of isospin breakings in hadron masses Theoretical Origins of K^{\pm} S Neutron / Proton mass difference Breaking of Dashen's theorem •Breaking in f_K / f_{π} , K_{l3} , and Delta $I = \frac{1}{2}$ rule, $\varepsilon' / \varepsilon$? K^0 5.23(14) MeV from (m_d-m_u) -1.327(37) MeV from QED¹⁰ ## **QCDCQ** (QCD machine for Chiral Quarks) ### QCDCQ Computer - Successor of QCDSP (99- 1Tflops), QCDOC (05- 10Tflops) - Pre-commercial machine of IBM's Blue Gene Q, designed & developed by IBM, RIKEN-BNL, Columbia & University of Edinburgh. [P. Boyle, N. Christ, C. Jung] - 210 T flops peak / rack - 2 racks for RIKEN-BNL (DD1) \$1M 1 racks for BNL (DD2) in 2011 \$1.5M + 1 or 0.5 racks for USQCD? - 4 racks at University of Edinburgh - More accurate calculations $M\pi = 300 \text{ MeV} \rightarrow 180, 135 \text{ MeV}$ - Improve tests of SM and beyond, CKM, radius of proton, - New calculations will become possible - (g-2)_mu LbL, EDM, epsilon'/epsilon, strangeness in Nucleons, #### muon's anomalous magnetic moment One of the most precisely determined numbers, starting from the construction of QED. $$a_{\mu} = \frac{g-2}{2} = (116\ 592\ 089 \pm 54 \pm 33) \times 10^{-11}$$ BNL-E821 #### [Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]] | <u>- </u> | | |--|---| | Contribution | Result ($\times 10^{-11}$). | | QED (leptons) | 116 584 718.09 \pm 0.15 | | HVP (lo) | 6 923. \pm 42 | | HVP (ho) | -97.9 \pm 0.9 | | HLBL | 105.± 26 | | EW | 154. \pm 2 | | Total SM | $116\ 591\ 802\ \pm\ 42_{HVP(lo)}\ \pm\ 26_{HIRI}\ \pm\ 02\ (49_{tot})$ | • 287 ± 80 or 3.6σ difference between experiment and SM prediction. E989 at FNAL is to reduce the total experimental error by, at least, a factor of four over E821, or 0.14 ppm! ## Hadronic Light-by-Light computation on lattice - Goal : determine HLBL with \sim 10 % accuracy. [INT-11-47 Workshop on Hadronic Light-by-Light Contribution to $(g-2)_{\mu}$ (2011)] - ullet Direct QCD+QED computation of $(g-2)_{\mu}$ Hadronic light-by-light diagram. - $\mathcal{O}(e^6)$ two loop QED, l_1 l_2 , besides QCD, 8 dimension integral. - Muon and Photon parts is fully known analytically. - QCD+QED simulation has unwanted diagrams, which should be taken as parts of the photon's vacuum polarization and the vertex correction. $\mathcal{O}(e^4, e^6)$. ## Tackling disconnected quark loops •Brute force calculation Nf=2+1 $\eta - \eta'$ [PRL 100:241601(2010)] Optimized (multi) hadron fields Direct computation of Re (A₀) [arXiv:1106.2714 (2011)] New Idea Electric Dipole Moment (EDM) of Nucleons vacuum angle θ is implemented on lattice with analytic continuation New algorithms to accelerate propagator computations [EigCG, MaDWF] (see B. Mawhinney& H. Yin @ LAT11) 14 Improved statistcs by Low eigenmode averaging Much improved Re(A_0) and 1st determination of Im(A_0) expected very soon (see Qi Liu's talk@LAT11) ## Where are they now? Lattice | <u>Name</u> | When at BNL | Current Position | |-------------------------------------|--------------------|---| | Sinya Aoki | 1987-89 | Faculty at University of Tsukuba | | Andreas Gocksch | 1988-93 | Finance | | Aida El-Khadra | 1989-91 | Faculty at University of Illinois | | James Simone (gs; UCLA) | 1989-91 | Scientist at Fermilab Computer Division | | Kenton Yee (gs; UCLA) | 1989-92 | Lawyer | | Claudio Parrinello (gs; Univ. Pisa) | 1992-94 | Faculty at University of Liverpool | | Ivan Horvath (gs; Rochester) | 1992-95 | Faculty at University of Kentucky | | Wendy Schaffer | 1993-96 | Medicine/Sloane Kettering | | Tom Blum | 1995-04 | Faculty at University of Connecticut | | Matt Wingate | 1997-00 | Faculty at Cambridge University | | Chris Dawson | 1998-07 | Faculty at University of Virginia, Google | | Shoichi Sasaki | 1998-00 | Faculty at University of Tokyo | | Tilo Wettig | 2000-04 | Faculty at Regensburg | | Kostas Orginos | 2000-03 | Faculty at William & Mary | | Yasumichi Aoki | 2000-03, 2006-2010 | Faculty at Nagoya University | | | | | gs = graduate student CWS = Came with own fellowship support LDRD = Laboratory Directed Research and Development # Where are they now? Lattice (contd.) | Name | When at BNL | Current Position | |------------------------------------|-------------|---------------------------------------| | | | | | Sasa Prelovsek | 2001-02 | Faculty at Ljubljana | | Jack Laiho (gs; Princeton) | 2001-04 | Faculty at University of Glasgow | | Yukio Nemoto | 2001-04 | Post-doc at Nagoya University | | Federico Berruto | 2002-04 | Finance | | Jun-Ichi Noaki | 2002-05 | Five years fellow at KEK | | Takanori Sugihara | 2003-05 | RIKEN Super computer R&D center | | Norikzu Yamada | 2003-06 | Faculty at KEK | | Takashi Kaneko (CWS) | 2004-05 | Faculty at KEK | | Koichi Hashimoto (gs; Kanazawa Uni | v) 2004-06 | HPC Computer Company | | Takeshi Yamazaki | 2004-07 | Faculty at Nagoya University | | Takumi Doi | 2004-07 | Post-doc at University of Tsukuba | | Enno Scholz | 2005-08 | Faculty at Regensburg | | Tomomi Ishikawa | 2006-09 | Post-doc at University of Connecticut | | Adam Lichtl | 2006-09 | Finance | gs = graduate student CWS = Came with own fellowship support LDRD = Laboratory Directed Research and Development ## **Summary** - Lattice QCD is becoming a practical tool for non-perturbative calculation from first principles in particle physics. (bridge between experiment and theory) - DWF, preserves chiral symmetry, is the simplest choice for (Weak) Matrix elements (\rightarrow R. Van de Water's talk), which are necessary ingredients for precise checks of the Standard Model of particle physics and beyond. - DWF Nf=2+1 are being carried out thanks to many developments in theory, hardware, and algorithms. - New hardware QCDCQ (BG/Q) - Improved and New Physics quantities : - Theoretical analysis - Isospin breaking effects from QCD+QED simulation - New renormalization schemes RI/SMOM - Weak Matrix Elements $B_{K'}$, ϵ'/ϵ , B & D Physics - disconnected diagrams η', g-2 LbL, Proton/Neutron EDM, strangeness in Nucleon ... ## **Appendix** ## QCDCQ target ensemble | Volume | 1/a | L | m_{π} | Time units | m _{quark} a | |----------------------|---------------------------------|--------|-----------|------------|----------------------| | 002 × 04 4 | 1.40 GeV | 4.5 fm | 180 MeV | 200 | 0.001+0.0018 | | 32° X 04 | 32 ³ x 64 1.40 GeV | | 250 MeV | 1000 | 0.0042+0.0018 | | 043 × 04 1 70 04 | 1.70.001 | 2.7 fm | 315 MeV | 9000 | 0.005+0.0032 | | 24° X 04 | 24 ³ x 64 1.73 GeV | | 402 MeV | 9000 | 0.01+0.0032 | | | 32 ³ x 64 2.32 GeV | 2.7 fm | 300 MeV | 7000 | 0.004+0.0006 | | 32 ³ x 64 | | | 350 MeV | 8000 | 0.006+0.0006 | | | | | 410 MeV | 6000 | 0.008+0.0006 | ## QCDCQ target ensemble (contd.) | Volume | 1/a | L | m_{π} | Time units | m _{quark} a | QCDCQ
Rack Yrs. | |-----------------------|----------|--------|-----------|------------|----------------------|--------------------| | 48 ³ x 64 | 1.40 GeV | 6.7 fm | 140 MeV | 3000 | 0.0001+0.0018 | 0.5 | | 48 ³ x 64 | 2.32 GeV | 4.0 fm | 180 MeV | 6000 | 0.001+0.0006 | 0.25 | | 64 ³ x 128 | 2.32 GeV | 5.4 fm | 140 MeV | 6000 | 0.0004+0.0006 | 2.5 | | 32 ³ x 8 | 1.40 GeV | 4.5 fm | 140 MeV | 200,000 | 0.0001+0.0018 | 0.6 | | 48 ³ x 8 | 1.40 GeV | 6.7 fm | 140 MeV | 200,000 | 0.0001+0.0018 | 2.8 | | 48 ³ x 12 | 1.73 GeV | 5.4 fm | 140 MeV | 200,000 | 0.0005+0.001 | 2.0 | - Coarse and Large lattice for Nucleon Physics and $K \to \pi\pi$ on physical quark mass - Fine lattice scaling study on physical quark mass for accurate determination for basic quantities. - Thermo dynamics studies using chiral lattice quark with physical mass. ## QCD+QED Other Results Breaking of Dashen's theorem (NLO, O(m e²), effects in ChPT) [C. Aubin et al. (MILC) PRD70: 114501 (2004)] $$\Delta E = \frac{M_K^2(m, 2/3, m_s, -1/3) - M_K^2(m, -1/3, m_s, -1/3)}{M^2(m, 2/3, m, -1/3) - M^2(m, -1/3, m, -1/3)} - 1,$$ $$\Delta E = 0.628(59)$$ (statistical error ony) "Iso symmetric QCD" values, e=0, at m_u=m_d=m_{ud}: $m_{\pi}^{(\text{QCD})} = 134.98(23) \text{ MeV},$ $m_{K}^{(\text{QCD})} = 494.521(58) \text{ MeV}.$ Gasser & Leutwyler's Kappa values: $$\kappa_{\text{quark mass}} \equiv \frac{m_d - m_u}{m_s - m_{ud}} \frac{2m_{ud}}{m_s + m_{ud}},$$ $$\kappa_{\text{meson}} \equiv \frac{(M_{K^0}^2 - M_{K^{\pm}}^2)_{\text{QCD}}}{M_K^2 - M_{\pi}^2} \frac{M_{\pi}^2}{M_K^2}$$ $$\kappa_{\text{quark mass}} = 0.00176(4),$$ $$\kappa_{\text{meson}} = 0.00191(3),$$ $$\kappa(\eta \to \pi^0 \pi^+ \pi^-; p^6) = 0.0019(3)$$ ### Nucleon mass splitting in $N_F = 2, 2 + 1$ $$M_N - M_p|_{ extsf{QED}} = -0.383(68) \text{ MeV}$$ $M_N - M_p|_{ extsf{quark mass}} = 2.24(12) \text{ MeV}$ $\implies M_N - M_p| = 1.86(14)(47)_{ extsf{FV,fit}} \text{ MeV}$ (experiment: 1.2933321(4)MeV) $(experiment: 1.2933321(4)MeV)_{22}$ #### $\mathcal{O}(e)$ error reduction On the infinitely large statistical ensemble, term proportional to odd powers of e vanishes. But for finite statistics, $$\langle O \rangle_e = \langle C_0 \rangle + \langle C_1 \rangle e + \langle C_2 \rangle e^2 + \cdots$$ $\langle C_{2n-1} \rangle$ could be finite and source of large statistical error as e^{2n-1} vs e^{2n} . • By averaging +e and -e measurements on the same set of QCD+QED configuration, $$\frac{1}{2}[\langle O \rangle_e + \langle O \rangle_{-e}] = \langle C_0 \rangle + \langle C_2 \rangle e^2 + \cdots$$ $\mathcal{O}(e)$ is exactly canceled. • More than a factor of 10 error reduction, corresponding to $\times 100$ measurements by only twice computational cost (vs naive reduction factor $\sqrt{2}$). ### Other recent works of isospin breaking on lattice - [A.Portell, LAT10 (BMW)] EM correction to hadron masses - [A. Torok, LAT10] [E. Freeland, LAT10] [MILC Collaboration (S. Basak et al.) PoS LAT2008 127] EM splitting using MILC ensembles. The breaking of Dashen's theorem $$\Delta M_D^2 = (M_{K^\pm}^2 - M_{K^0}^2)_{\rm em} - (M_{\pi^\pm}^2 - M_{\pi^0}^2)_{\rm em}$$ - [A. Wallker-Loud, LAT10] Using anisotropic clover, m_u-m_d from $m_{\Xi^-}-m_{\Xi^0}$, derive $(m_p-m_n)_{m_d-m_u}$. - [I.Baum, LAT10] - [McNeile, Michael, Urbach (ETMC) PLB674(09) 286] $\rho \omega$ mass splitting using twisted Wilson fermion. Discussed $\rho \omega$ mixing from $m_u m_d$. Measure disconnected quark loop correlation. - [JLQCD (E.Shintani et. al.)PRL 101(08) 242001, PRD79(09)] Calculate $\Pi_V \Pi_A$, derive the EM contribution to the pion's charge splittings in quark massless limit and the S-parameter using overlap fermion. - [NPLQCD NPB 768 (07) 38] Calculate $(m_p m_n)_{m_d m_u}$. PQChPT for nucleon mass. ## RI/SMOM scheme - Renormalization scale of RI/MOM is set by the momentum of the fermion external lines' p² - p² has to be large to avoid the unwanted infrared effects from the spontaneous chiral symmetry breaking, absent in the perturbation. - Exceptional momentum (sum p =0) is easy for perturbation, but has the unwanted effects (Weinberg's theorem). It actually diverges in PS channel (pion pole) at the chiral limit. RI/SMOM sets Non-exceptional symmetric momentum configuration, which reduce the unwanted IR divergence. Also perturbative convergence is better to 2 loop. $$q^2 = p_1^2 = p_2^2$$ ## Results of RI/SMOM Residual unwanted effects from chiral symmetry breaking ~ 1 % at $$p = 2 \text{ GeV}$$ [Y. Aoki LAT09] 2-loop conversion factors.Truncation errors are smaller for SMOM $$C_m^{\text{RI'/MOM}} = 1 - 0.133 - 0.0759 + \cdots$$ $C_m^{\text{RI/MOM}_{\gamma}} = 1 - 0.133 - 0.0816 + \cdots$ $$C_m^{\text{RI/SMOM}} = 1 - 0.0161 - 0.00660 + \cdots$$ $C_m^{\text{RI/SMOM}_{\gamma}} = 1 - 0.0495 - 0.0228 + \cdots$ ## Z(BK) systematic errors $$Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 2.31\text{GeV}) = 0.964(25)[2.6\%]$$ $Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 1.73\text{GeV}) = 0.936(30)$ ## Question about quark masses [M. Creutz] - =π,η' cause mixing among u_L , u_R , d_L , d_R effect of anomaly 't Hooft vertex - This may cause an effective RG running for m_u/m_d , and thus scheme dependent. #### HLBL subtraction [Lattice2005, hep-lat/050916] - Use one analytic photon propagator, which help to reduce statistical error from QED. - Other two photons emerge stochastically (2 stochastic photon propagators). - Use the parallel 4D FFT. - In subtracting observables, the up stairs and down stairs are averaged separately, then multiplied together with the analytic photon. - Correlations between the subtracted and the subtracting help to reduce the statistical error. ### **Preliminary Results for QED** #### [Saumitra Chowdhury Ph.D. thesis+Recent results] - Only QED (e = 1). - Extract $F_2(q^2)$ from the three point function on $16^3 \times 32$, $L_s = 8$ - $m_{\mu}=0.4$ (unphysically heavy), $m_l=0.01$ - $\mathcal{O}(100-1,000)$ QED configurations. Non zero signal with a reasonable magnitude is obtained. ## muon's anomalous magnetic moment computation on lattice • $\pi^0 \to \gamma^{(*)} \gamma^{(*)}$ form factors or transition function [Eigo Shintani] : one of the significant part of HLBL $$a_{\mu}^{LbyL} = -e^{6} \int \frac{dq_{1}^{4}dq_{2}^{4}}{(2\pi)^{8}} f(q_{1}, q_{2}, m_{\mu}^{2}) \times \left[\frac{f_{\pi^{0*} \to \gamma^{*} \gamma^{*}}(q_{1}^{2}, (q_{1} + q_{2})^{2}) f_{\pi^{0*} \to \gamma^{*} \gamma}(q_{2}^{2}, 0)}{q_{2}^{2} + m_{\pi}^{2}} \right] + \cdots$$ $$G_{\mu\nu}^{PVV}(P_2,Q) = \sum_{x,y} e^{-iQx - iP_2y} \left\langle 2m_q P^3(x) V_{\nu}^{EM}(y) V_{\mu}^{EM}(0) \right\rangle$$ ## $K \rightarrow \pi \pi Decays$ Miani-Testa theorem: Large times yield ππ at rest: $$<\pi \pi(t) H_w(0) K(-t) > -> <\pi \pi(p=0) |H_w|K>.$$ - Use finite box with anti-periodic boundary conditions to force $p_{\pi} \neq 0$. - Give the K a finite momentum (Lab frame) - Lellouch Luscher formula Relation of on-shell decay amplitude in infinite volume |A|(CM) and on finite volume |M|(CM) $$|A|^{2} = 8\pi \left(\frac{E_{\pi\pi}}{p}\right)^{3} \left\{ p \frac{\partial \delta(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q} \right\} |M|^{2}$$ where $$E_{\pi\pi} = 2\sqrt{m_{\pi}^2 + p^2} = m_K$$ δ : scattering phase shift $$\tan \phi(q) = -\frac{q\pi^{3/2}}{Z_{00}(1;q^2)}, \quad Z_{00}(1;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{n \in \mathbb{Z}^3} \frac{1}{n^2 - q^2}$$ $\delta(p)$ is obtained by $\delta(p) = n\pi - \phi(q), \ q = Lp/2\pi. \ l > 1$ is neglected. ## Eta' results for Nf=2 & 2+1 | $m_{\eta'}$ | $m_{\eta^\prime}^{ m phys}$ [MeV] | $m_{\eta'}r_0$ | Fit and chiral extrapolation | |-------------|-----------------------------------|----------------|------------------------------| | 0.480(78) | 738(121) | 2.05(33) | (Standard) AWTI | | 0.487(78) | 748(120) | 2.08(33) | (Standard) linear | | 0.532(82) | 819(127) | 2.28(35) | (Variational) AWTI | | 0.560(89) | 862(130) | 2.40(36) | (Variational) linear | [Nf=2 K. Hashimoto] #### Proton/Neutron EDM on Lattice Permanent Electric Dipole Moment (EDM) is a signature of CP (or Time reversal) symmetry violation. $\vec{D} = D\vec{c}$ #### A source of CP violation: **Strong CP**: vacuum angle θ , is implemented on lattice with analytically continued to pure imaginary (Monte Carlo simulation) EDM is measured through the electric form factor $F_3(q^2)$ $$\left\langle N_s(\mathbf{p'})|V_{\mu}^{EM}(\mathbf{q})|\overline{N}_s(\mathbf{p})\right\rangle_{\theta} = F_1(q^2)\gamma_{\mu} + F_2(q^2)\frac{q_{\nu}\sigma_{\mu\nu}}{2m_N} + i\theta F_3(\mathbf{q}^2)\frac{q_{\nu}\sigma_{\mu\nu}\gamma_5}{2m_N} + \cdots, \qquad q = p' - p$$ $$D_n = \lim_{q^2 \to 0} \frac{e}{2m_N} F_3(q^2)$$ ## **Preliminary Results of NEDM** - θ = 0.2 (left) and θ =0.4 (right) - Dipole ansatz - Has the systematical error from chiral breaking of clover fermion. [Aoki, Gocksch, Manohar, Sharpe PRL 65 1092 (1990)] - DWF simulation is planned to remove the lattice artifact. #### **QCD*** machines and Blue Gene - QCDSP (48 GF/rack peak), TI DSP C31 (1993-1998) 12 racks at RBRC, 600GF - QCDOC (0.8 TF/rack) 180nm ASIC (2003-2005) 1 core, System on Chip, 12 racks at RBRC, 10TF, \$1/Mflops(sustained) - BG/L (5.7TF/rack) 130nm ASIC (1999-2004) dual core system-on chip - BG/P (13.9 TF/rack) 90nm ASIC (2004-2007) quad core, DMA - QCDCQ (205 TF/rack) 45 nm (2007-2011) 16 core, \$0.02/Mflops(sustained) - Low power consumptions \longrightarrow large number of nodes (1,024) per rack - High memory/interconnect Bandwidth - Gives efficient performance for lattice QCD ### Resources ``` QCDOC (DOE + RBRC) 2005-present 10 + 10 TFLOPS peak USQCD + other resources (Teragrid, RIKEN/Japan) 2005-2007: 13 TFLOPS (peak) year 1 or 2 proposals to USQCD Nf=2, 2+1 QCD vacuum, WME, B K, EM, 2008: 80 TFLOPS (peak) year 2 proposals QCD vacuum + pi,K INCITE ALCF 180 M BG/P core hours (70 TFLOPS year) 2009: 50 TFLOPS (peak) year 4 proposals QCD vacuum + pi, K INCITE ALCF 78 M BG/P core hours (30+3 TFLOPS year) Static-B, CPV 10 M QCD node hours (0.93 TFLOPS year) Relativistic-B 2.6 M 6n-node hours (5.9 TFLOPS year) 2010: 97 TFLOPS (peak) year 7 proposals QCD vacuum + pi, K INCITE ALCF 75 M BG/P core hour (30+2 TFLOPS year) EM, Nucleon, Static-B RICC(RIKEN/Japan) 9.15 M RICC core hours (12 TFLOPS year) EM. Nucleon RICC 17.4 M RICC core hours (42 TFLOPS year) Relativistic-B 4 M Jpsi core hours (4 TFLOPS year) EM 7 M Jpsi core hours (7 TFLOPS year) Nucleon structures Teragrid (under review) ``` ### BG/Q Rack Capacity for Four I/O Drawers Service Card for Upper Midplane Node Card Service Card for Lower Midplane Bulk Power Supply Water Hoses Another Bulk Power Supply (Not Shown)